Some identities involving the near pseudo Smarandache function

نویسنده

  • Yu Wang
چکیده

For any positive integer n and fixed integer t ≥ 1, we define function Ut(n) = min{k : 1 t + 2 t + · · · + n t + k = m, n | m, k ∈ N + , t ∈ N + }, where n ∈ N + , m ∈ N + , which is a new pseudo Smarandache function. The main purpose of this paper is using the elementary method to study the properties of Ut(n), and obtain some interesting identities involving function Ut(n). In reference [1], A.W.Vyawahare defined the near pseudo Smarandache function K(n) as K(n) = m = n(n + 1) 2 + k, where k is the small positive integer such that n divides m. Then he studied the elementary properties of K(n), and obtained a series interesting results for K(n). For example, he proved that K(n) = n(n + 3) 2 , if n is odd, and K(n) = n(n + 2) 2 , if n is even; The equation K(n) = n has no positive integer solution. In reference [2], Zhang Yongfeng studied the calculating problem of an infinite series involving the near pseudo Smarandache function K(n), and proved that for any real number s > 1 2 , the series ∞ n=1 1 K s (n) is convergent, and ∞ n=1 1 K(n) = 2 3 ln 2 + 5 6 , ∞ n=1 1 K 2 (n) = 11 108 π 2 − 22 + 2 ln 2 27. Yang hai and Fu Ruiqin [3] studied the mean value properties of the near pseudo Smarandache function K(n), and obtained two asymptotic formula by using the analytic method. They proved that for any real number x ≥ 1, n≤x d(k) = n≤x d K(n) − n(n + 1) 2 = 3 4 x log x + Ax + O x 1 2 log 2 x ,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the mean value of the Near Pseudo Smarandache Function

The main purpose of this paper is using the analytic method to study the asymptotic properties of the Near Pseudo Smarandache Function, and give two interesting asymptotic formulae for it.

متن کامل

An infinity series involving the Smarandache-type function

In this paper, we using the elementary method to study the convergent property of one class Dirichlet series involving a special sequences, and give several interesting identities for it.

متن کامل

Nonlinear Picone identities to Pseudo $p$-Laplace operator and applications

In this paper, we derive a nonlinear Picone identity to the pseudo p-Laplace operator, which contains some known Picone identities and removes a condition used in many previous papers. Some applications are given including a Liouville type theorem to the singular pseudo p-Laplace system, a Sturmian comparison principle to the pseudo p-Laplace equation, a new Hardy type inequality with weight an...

متن کامل

On the Pseudo-smarandache Squarefree Function

In this paper we discuss various problems and conjectures concered the pseudo-Smarandache squarefree function.

متن کامل

The Pseudo-smarandache Function

The Pseudo-Smarandache Function is part of number theory. The function comes from the Smarandache Function. The Pseudo-Smarandache Function is represented by Z(n) where n represents any natural number. The value for a given Z(n) is the smallest integer such that 1+2+3+ . . . + Z(n) is divisible by n. Within the Pseudo-Smarandache Function, there are several formulas which make it easier to find...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013